

Immunology Basics Relevant to Cancer Immunotherapy:

Regulation of T Cell Responses by Checkpoint Inhibitors and Regulatory T Cells

Andrew H. Lichtman, M.D. Ph.D.
Department of Pathology
Brigham and Women's Hospital and
Harvard Medical School

Lecture Outline

- Tumor immune evasion mechanisms
- T cell tolerance
- Mechanism of peripheral tolerance
- Inhibitory receptors on T cells
- Regulatory T cells
- Myeloid derived suppressor cells
- The immunosuppressive tumor microenvironment

Hallmarks of Cancer

General principles

The immune system recognizes and reacts against cancers

- The immune response against tumors is often dominated by regulation or tolerance
 - Evasion of host immunity is one of the hallmarks of cancer
- Some immune responses promote cancer growth
- Better characterization of the immune responses against cancers will help in developing new immunotherapies

Mechanisms by Which Tumors Escape Immune Defenses

- Same mechanisms microbes use to evade immunity
- Same mechanisms of peripheral self tolerance

Central and Peripheral Tolerance to Self

The principal fate of lymphocytes that recognize self antigens in the generative organs is death (deletion), BUT:

Some B cells may change their specificity (called "receptor editing")

Some T cells may differentiate into regulatory (suppressor) T lymphocytes

Mechanisms of Peripheral Tolerance

Peripheral Tolerance Depends on B7-CD28 Family Proteins

- Antigen recognition in absence of B7's
- CTLA-4 blocking of B7
- CTLA4 inhibitory signals into the T cells
- PD-L1/2 binding to PD-1, generating inhibitory signals into T cells

Mechanisms of T Cell Anergy

One Mechanism of Action of CTLA-4

Mechanisms of Action of CTLA-4

CTLA-4 Inhibits T cell Activation:

Competitive Blockade of CD28 –B7 Costimulation

How PD-1 Inhibits T cell Activation:

Inhibitory Signals Block Effector T Cell Activation

Baumeister SH, et al. 2016. Annu. Rev. Immunol. 34:539-73

Actions and Functions of CTLA-4 and PD-1

	CTLA-4	PD-1
Major site of action	Secondary lymphoid organs	Peripheral tissues
Stage of immune response that is inhibited	Induction (priming)	Effector phase
Cell type that is inhibited	CD4 ⁺ and CD8 ⁺	$CD8^+ > CD4^+$
Cellular expression	Tregs, activated T cells	Activated T cells
Main signals inhibited	Competitive inhibitor of CD28 costimulation (by binding to B7 with high affinity and removing B7 from APCs)	Inhibits kinase-dependent signals from CD28 and TCR (by recruiting and activating phosphatase following binding to its ligands PDL-1 or PDL-2)
Role in Treg-mediated suppression of immune responses	Yes	Probably no

CyTOF analysis of T cells in anti-CTLA-4 treated tumors show expansion in CD4+ and CD8+ effectors, but expansion of only CD8+ effectors in anti-PD-1 treated tumors

Why do Tumors or Tumor-Specific T cells Engage PD-1 and CTLA-4?

• CTLA-4:

 Tumor cause low levels of B7 expression, which permits preferential engagement of the high-affinity receptor CTLA-4

• PD-1:

- Many tumors may upregulate PD-L1
 - Gene amplification; increased recycling; increased transcription
- Many tumors induce PD-1 on tumor-specific T cells
 - Chronic antigen exposure leads to effector T cell "exhaustion", characterized by high PD-1, high CTLA-4, decreased cytokine production and decreased cytotoxicity

Relevance of Inhibitors of T Cell Activation to Cancer Immunotherapy:

"Immune Checkpoint blockade": Inhibit the inhibitors and increase anti-tumor immunity

Immune Checkpoint Blockade (ICB) Counteracts a Common Tumor Evasion Mechanism

- Only 30-50% of patients respond to ICB therapy... why?
- Tumors with more mutations (more neoantigens) are more responsive to checkpoint blockade than similar tumors less mutations.
 - Tumors with mismatch repair (MMR) mutations generate large numbers of random point mutations, and are generally more immunogenic than other tumors.
 - Tumors with MMR mutations are more responsive to checkpoint blockade than similar tumors without MMR mutations.
- Other evasion strategies at work
 - LAG-3, TIGIT, other inhibitors
 - Treg to Teff balance

Checkpoint Blockade is More Effective than Tumor Vaccines

 Tumor vaccines have been tried for many years with limited success

- Immune evasion is a hallmark of cancer
 - Multiple regulatory mechanisms
- Vaccines have to overcome regulation
 - Tumor vaccines are the only examples of therapeutic (not prophylactic) vaccines
 - Vaccination after tumor detection means regulatory mechanisms are already active

Many inhibitory/regulatory molecules on T cells

Both Activating and Inhibitory Receptors on T cels are Potential Immunotherapy "Targets"

Regulatory T Cells

Regulatory T Cells and CTLA4

Myeloid Derived Suppressor Cells

- MDSCs have potent immunosuppressive activity
- MDSC are formed in the bone marrow and, migrate to secondary lymphoid organs and the tumor
- MDSCs suppress immune cell function by multiple mechanisms.
 - Expression of arginase, inducible NOS , TGF- β , IL-10 , and COX2
 - Sequestration of cysteine
 - Decreased expression of L-selectin by T cells
 - Induction of Tregs
- Myeloid-derived suppressor cells are prominent in the tumor microenvironment

Myeloid Derived Suppressor Cells

Relevance of Treg and MDSC to Immunotherapy

- Treg and possibly MDSCs are important "targets" for enhancement of anti-tumor immunity
- Checkpoint blockade drugs may directly impair Treg or MDSC function

The Immunosuppressive Tumor Microenvironment:
A Major Challenge

